Stochastic Event Reconstruction of Atmospheric Contaminant Dispersion Using Bayesian Inference

نویسندگان

  • Inanc Senocak
  • Nicolas W. Hengartner
  • Margaret B. Short
  • W. Brent Daniel
چکیده

Environmental sensors have been deployed in various cities for early detection of contaminant releases into the atmosphere. Event reconstruction and improved dispersion modeling capabilities are needed to estimate the extent of contamination, which is required to implement effective strategies in emergency management. To this end, a stochastic event reconstruction capability that can process information from an environmental sensor network is developed. A probability model is proposed to take into account both zero and non-zero concentration measurements that can be available from a sensor network because of a sensor’s specified limit of detection. The inference is based on the Bayesian paradigm with Markov chain Monte Carlo (MCMC) sampling. Fast-running Gaussian plume dispersion models are adopted as the forward model in the Bayesian inference approach to achieve rapid-response event reconstructions. The Gaussian plume model is substantially enhanced by introducing stochastic parameters in its turbulent diffusion parameterizations and estimating them within the Bayesian inference framework. Additionally, parameters of the likelihood function are estimated in a principled way using data and prior probabilities to avoid tuning in the overall method, The event reconstruction method is successfully validated for both real and synthetic dispersion problems, and posterior distributions of the model parameters are used to generate probabilistic plume envelopes with specified confidence levels to aid emergency decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Reconstruction of Multiple Source Atmospheric Contaminant Dispersion Events

Reconstruction of intentional or accidental release of contaminants into the atmosphere using concentration measurements from a sensor network constitutes an inverse problem. An added complexity arises when the contaminant is released from multiple sources. Determining the correct number of sources is critical because an incorrect estimation could mislead and delay response efforts. We present ...

متن کامل

Application of a Bayesian Inference Method to Reconstruct Short-Range Atmospheric Dispersion Events

In the event of an accidental or intentional release of chemical or biological (CB) agents into the atmosphere, first responders and decision makers need to rapidly locate and characterize the source of dispersion events using limited information from sensor networks. In this study the stochastic event reconstruction tool (SERT) is applied to a subset of the Fusing Sensor Information from Obser...

متن کامل

Bayesian methodology in the stochastic event reconstruction problems

In many areas of application it is important to estimate unknown model parameters in order to model precisely the underlying dynamics of a physical system. In this context the Bayesian approach is a powerful tool to combine observed data along with prior knowledge to gain a current (probabilistic) understanding of unknown model parameters. We have applied the methodology combining Bayesian infe...

متن کامل

Quasi-Monte Carlo, Monte Carlo, and regularized gradient optimization methods for source characterization of atmospheric releases

An inversion technique comprising stochastic search and regularized gradient optimization was developed to solve the atmospheric source characterization problem. The inverse problem comprises retrieving the spatial coordinates, source strength, and the wind speed and wind direction at the source, given certain receptor locations and concentration values at these receptor locations. The Gaussian...

متن کامل

Stochastic source term estimation of HAZMAT releases: algorithms and uncertainty

Source term estimation (STE) of hazardous material (HAZMAT) releases is critical for emergency response. Such problem is usually solved with the aid of atmospheric dispersion modelling and inversion algorithms accompanied with a variety of uncertainty, including uncertainty in atmospheric dispersion models, uncertainty in meteorological data, uncertainty in measurement process and uncertainty i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015